
skip to content●

User Tools
Logged in as: Greg Croft (croft)●

Admin●

Update Profile●

Logout●

Site Tools

 Search
Tools ▼ >

Trace: • 5.2_to_6.0_porting_guide
Hotfix release available: 2014-09-29a "Hrun". upgrade now! [46.1] (what's this?)
New release available: 2014-09-29 "Hrun". upgrade now! [46] (what's this?)
Security Hotfix 2014-05-05b to prevent zero byte attacks on external auth systems is available.
upgrade now! [44.2] (what's this?)

Table of Contents

5.2 to 6.0 Porting Guide●

Overview & Geometry❍

Population & Culling❍

Instance Classes❍

Grass System❍

Heap Management❍

Shaders❍

File System Interface❍

Instancing❍

5.2 to 6.0 Porting Guide
SDK Basics

The 6.0 release notes contain a comprehensive list of everything that has changed in the 6.0 SDK.
Start by reading this list and then returning here for details on select topics.

 Edit

./start.pdf
./5.2_to_6.0_porting_guide.pdf
./5.2_to_6.0_porting_guide.pdf
./5.2_to_6.0_porting_guide.pdf
./5.2_to_6.0_porting_guide.pdf
http://download.dokuwiki.org
http://www.dokuwiki.org/update_check
http://download.dokuwiki.org
http://www.dokuwiki.org/update_check
http://download.dokuwiki.org
http://www.dokuwiki.org/update_check

Overview & Geometry
The fundemental organization of the 5.x SDK is the same. It still has:

Four libraries: Core, Forest, Rendering Interface, and Platform (DirectX9, PS3, etc) Renderer●

Example reference application, detailing full use of the SDK●

SRT files●

Concept of base trees (CTree) and instances (CInstance).●

However, there are some big improvements in 6.0 which led to some pretty signifcant source
changes. Most importantly, there are no longer rigid geometry structures or shaders. Both are fluid
and based on user direction during the art asset compilation process. In 5.x, there was a single bank
of shaders that applied to all of the geometry. Users were permitted to change some features of
these shaders (+/ specular, +/- normal mapping, etc), but those changes would affect the entire
forest. In 6.0, every material and LOD of every tree may be configured differently. While this creates
a great deal more shaders for a given forest, it dramatically increases performance via shader LOD
and the use of more expensive shader effects on hero trees or only on those parts of a tree that need
it.

A configurable shader system also means less memory usage. Each material has its own vertex
declaration and for materials with fewer effects (e.g. distant LOD materials), fewer attributes are
needed. Also, 6.0 uses half floats everywhere possible, further reducing the amount of memory
needed. With non-constant vertex declarations, direct geometry access is not as straightforward as
querying the geometry with a 5.x SBranchVertex struct pointer. You'll have to query the vertex
declaration and ask for vertex properties by type. The documentation also details the basic geometry
structures and accessing 3D and billboard geometry.

Note: Those users who use the SpeedTree SDK in its entirety (e.g. rendering chores)
probably will not need to access the SpeedTree geometry directly as the SDK will do this

automatically. This section is mostly for those users that use the Core to retrieve the
geometry for use in their own vegetation rendering system.

Note: The SDK no longer makes distinctions between geometry “types” (e.g. branches,
fronds, leaf cards, etc) other than 3D geometry and billboards. Geometry types are

merged during Compilation to reduce the number of draw calls as much as possible.

 Edit

Population & Culling
Population and culling of tree instances has been greatly improved. In addition to being much
simpler to manage, performance has been increased significantly. In 5.x, the user had to pass the
entire world or level's tree population into the SDK up front so that it could determine which
instances were visible from any given view. This caused some complexity issues for those integrating
SpeedTree into a world-building environment as that population was always changing.

In 6.0, population/culling is organized much as it is in the 5.x grass system. That is, the tree
instances are streamed from the client application to the SpeedTree SDK when they become visible.
Hence, the SDK will never know the world's whole population, just those tree instances in the
frustum.

The 6.0 SDK organizes the world as a series of cells, just like 5.x. As the camera moves, cells go in
and out of visibility (in and out of the frustum). As cells become visible, the SDK will provide a list of
these cells that need to have their populations streamed in. The client app will * Unordered List Item
provide a list of instances at this time. World building applications can simply flush the visible cells
and repopulate when new instances need to be defined.

The structure SForestCullResults has been replaced with a higher-functioning class called
CVisibleInstances, where the bulk of the stream/cull code resides. The population and culling
procedures are detailed here and liberally documented in the reference application code.

 Edit

Instance Classes
Some minor changes were made to the CInstance class defined in Forest.h:

CInstance is now a base class for the new derived classes CTreeInstance and CGrassInstance.●

Instances can now be arbitrarily oriented. That is, they are no longer restricted to being rotated●

only around their up axis. Their orientation is defined by providing “up” and “right” vectors.

A trade off is available by #defining SPEEDTREE_COMPRESS_INSTANCE_VECTORS in●

Forest.h. This will trade space for speed. See [SDK]/Include/Forest/Forest.h for details.

 Edit

Grass System
In 5.2, grass was rendered as a series of wind-blown camera-facing quads, lit to match the
underlying terrain. With the release of 6.0, the grass system has been completely redone and
dramatically enhanced. In 6.0, grass geometry is defined in SRT files, exactly as tree models are.
This means that they are defined and edited in the SpeedTree Modeler as if they were any other tree
model. They are subject to the same geometry, lighting, and wind definitions as the tree models. The
only restriction is that they must have a single LOD and a single material.

While we call this the “grass system”, it may be used to populate the scene with any bit of ground
cover like rocks, twigs, or leaves. If the Modeler app can load it, it'll go through the pipeline and can
be used as a grass model.

Population of grass is very similar to how it was done in 5.2, which is closer to how tree instances
are populated in 6.0. Please see the documentation on the grass system for details.

 Edit

Heap Management
Console game developers are deeply concerned about heap fragmentation, as they should be. The
5.2 SDK went into a less-flexible/less-fragmenting mode when

SPEEDTREE_HEAP_FRIENDLY_MODE was #defined. In 6.0, there is no trade-off between flexibility
and less heap fragmentation. Using the SDK's heap reserve system, it's possible to limit the number
of heap allocations as well as prevent any from occurring during the render loops. More here.

 Edit

Shaders
As stated earlier, the shader system has been overhauled. Shaders are generated by the Compiler
application. Each material and LOD can had custom settings, from a minimal per-vertex diffuse-only
lighting, all the way up to per-pixel normal mapped + specular + transmission + seam_blending +
normal mapped detail + shadows, etc.

Shaders are created from a series of template files which make heavy use of #ifdef directives to
activate or bypass features. The Compiler inserts custom code into the templates, namely to write
the fluid vertex and pixel input declarations. All of the shaders share the same set of uniform shader
constants.

 Edit

File System Interface
In 6.0, the SDK's accesses to SRT files, textures, and shaders are now routed through a
user-controlled interface, very much like the custom memory allocator. If not needed, the SDK will
automatically handle the file loads.

More on the file system interface here.

 Edit

Instancing
The SDK rendering library & shaders now have instanced rendering built-in where supported, which
is most platforms. This helps dramatically reduce the number of draw calls needed to render a forest,
especially when grass and billboards are heavily used.

 Edit

Page Tools

Edit this page●

Old revisions●

Backlinks●

Back to top●

Read our new blog >>

./5.2_to_6.0_porting_guide.pdf
./5.2_to_6.0_porting_guide.pdf
./5.2_to_6.0_porting_guide.pdf
http://blog.speedtree.com/

Home●

Company●

3D Animation Software●

3D Tree/Plant Library●

Accolades●

Support●

Documentation●

Contact●

Privacy Policy●

Terms & Conditions●

Site Map●

©2014 IDV, Inc. All Rights Reserved.●

5446 Sunset Blvd., Suite 201●

Lexington, SC 29072●

803-356-1999●

●

●

●

●

http://www.speedtree.com
http://www.speedtree.com/tree-rendering-company.php
http://www.speedtree.com/tree-rendering-software-tools.php
http://store.speedtree.com/trees/
http://www.speedtree.com/news-customer-comments.php
http://www.speedtree.com/rendering-software-support.php
http://docs.speedtree.com/
http://www.speedtree.com/contact-speedtree.php
http://www.speedtree.com/privacy-policy.php
http://www.speedtree.com/terms-conditions.php
http://www.speedtree.com/site-map.php
http://www.facebook.com/SpeedTreeInc
https://twitter.com/SpeedTreeInc
http://www.linkedin.com/company/2744512
http://www.youtube.com/user/SpeedTreeMiddleware

	
	5.2 to 6.0 Porting Guide
	Overview & Geometry
	Population & Culling
	Instance Classes
	Grass System
	Heap Management
	Shaders
	File System Interface
	Instancing
	Page Tools

